Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622728

RESUMO

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Assuntos
Alphainfluenzavirus , Medicamentos de Ervas Chinesas , Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Pneumonia/tratamento farmacológico , Pneumonia/genética , Inflamação , Biologia de Sistemas , Perfilação da Expressão Gênica
2.
Eur J Clin Microbiol Infect Dis ; 43(1): 87-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966626

RESUMO

Early, accurate, and bulk detection of respiratory pathogens is essential for patient management and infection control. STARlet-All-in-One System (AIOS) (Seegene) is a new, fully automated, sample-to-result, molecular diagnostic platform. This study describes the first evaluation of STARlet-AIOS, by testing the Allplex™ SARS-CoV-2 (AS) and Allplex™ SARS-CoV-2/FluA/FluB/RSV combination (AC) assays in comparison to the SARS-CoV-2 assays used at our institute. Over a 3-week period, all naso-/oropharyngeal specimens tested for SARS-CoV-2 using either GeneXpert, Panther, or in-house developed test (LDT) were tested on the AIOS using the AS or AC assays. In addition, retrospective cohorts of specimens containing SARS-CoV-2, influenza virus A, influenza virus B, and RSV were tested. Discrepant results were re-tested with another assay used in this study. Hands-on time (HOT) and turn-around time (TAT) of the different systems were monitored and compared. A total of 738 specimens were tested on the AIOS using the AS assay. In addition, 210 specimens were tested using the AC assay. Overall agreement for SARS-CoV-2 detection was established as 98.5% and 95.2% for the AS and AC assay, respectively. Retrospective testing revealed high agreements for all targets, except for influenza virus A (agreement of 87.5%). HOT of the system was comparable to the HOT of GeneXpert and Panther and TAT comparable to Panther and LDT. The AIOS proved to be a robust sample-to-result system with low HOT and moderate TAT. This study showed reliable detection of SARS-CoV-2, influenza virus B, and RSV, whereas detection of influenza virus A using the AC assay appeared to be suboptimal.


Assuntos
Alphainfluenzavirus , Betainfluenzavirus , COVID-19 , Vírus da Influenza A , Influenza Humana , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Vírus da Influenza A/genética , Nasofaringe , Sensibilidade e Especificidade , COVID-19/diagnóstico , Vírus da Influenza B/genética , Influenza Humana/diagnóstico , Técnicas de Diagnóstico Molecular
3.
Vopr Virusol ; 68(6): 526-535, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38156568

RESUMO

INTRODUCTION: Polymerase proteins PB1 and PB2 determine the cold-adapted phenotype of the influenza virus A/Krasnodar/101/35/59 (H2N2), as was shown earlier. OBJECTIVE: The development of the reporter construct to determine the activity of viral polymerase at 33 and 37 °C using the minigenome method. MATERIALS AND METHODS: Co-transfection of Cos-1 cells with pHW2000 plasmids expressing viral polymerase proteins PB1, PB2, PA, NP (minigenome) and reporter construct. RESULTS: Based on segment 8, two reporter constructs were created that contain a direct or inverted NS1-GFP-NS2 sequence for the expression of NS2 and NS1 proteins translationally fused with green fluorescent protein (GFP), which allowed the evaluation the transcriptional and/or replicative activity of viral polymerase. CONCLUSION: Polymerase of virus A/Krasnodar/101/35/59 (H2N2) has higher replicative and transcriptional activity at 33 °C than at 37 °C. Its transcriptional activity is more temperature-dependent than its replicative activity. The replicative and transcriptional activity of polymerase A/Puerto Rico/8/34 virus (H1N1, Mount Sinai variant) have no significant differences and do not depend on temperature.


Assuntos
Alphainfluenzavirus , Vírus da Influenza A Subtipo H1N1 , Orthomyxoviridae , Vírus da Influenza A Subtipo H1N1/genética , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Temperatura , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
4.
Front Immunol ; 14: 1241323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649477

RESUMO

Introduction: Inflammatory lesions after Influenza A viruses (IAV) are potential therapeutic target for which better understanding of post-infection immune mechanisms is required. Most studies to evaluate innate immune reactions induced by IAV are based on quantitative/functional methods and anatomical exploration is most often non-existent. We aimed to study pulmonary damage and macrophage recruitment using two-photon excitation microscopy (TPEM) after IAV infection. Methods: We infected C57BL/6 CD11c+YFP mice with A/Puerto Ricco/8/34 H1N1. We performed immune cell analysis, including flow cytometry, cytokine concentration assays, and TPEM observations after staining with anti-F4/80 antibody coupled to BV421. We adapted live lung slice (LLS) method for ex-vivo intravital microscopy to analyze cell motility. Results: TPEM provided complementary data to flow cytometry and cytokine assays by allowing observation of bronchial epithelium lesions and spreading of local infection. Addition of F4/80-BV421 staining allowed us to precisely determine timing of recruitment and pulmonary migration of macrophages. Ex-vivo LLS preserved cellular viability, allowing us to observe acceleration of macrophage motility. Conclusion: After IAV infection, we were able to explore structural consequences and successive waves of innate immune cell recruitment. By combining microscopy, flow cytometry and chemokine measurements, we describe novel and precise scenario of innate immune response against IAV.


Assuntos
Alphainfluenzavirus , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Imunidade Inata , Microscopia de Fluorescência , Citocinas
5.
Nano Lett ; 23(11): 4844-4853, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220024

RESUMO

Here, we demonstrate the concerted inhibition of different influenza A virus (IAV) strains using a low-molecular-weight dual-action linear polymer. The 6'-sialyllactose and zanamivir conjugates of linear polyglycerol are optimized for simultaneous targeting of hemagglutinin and neuraminidase on the IAV surface. Independent of IAV subtypes, hemagglutination inhibition data suggest better adsorption of the heteromultivalent polymer than homomultivalent analogs onto the virus surface. Cryo-TEM images imply heteromultivalent compound-mediated virus aggregation. The optimized polymeric nanomaterial inhibits >99.9% propagation of various IAV strains 24 h postinfection in vitro at low nM concentrations and is up to 10000× more effective than the commercial zanamivir drug. In a human lung ex vivo multicyclic infection setup, the heteromultivalent polymer outperforms the commercial drug zanamivir and homomultivalent analogs or their physical mixtures. This study authenticates the translational potential of the dual-action targeting approach using small polymers for broad and high antiviral efficacy.


Assuntos
Alphainfluenzavirus , Glicosilação , Polímeros/química , Polímeros/farmacologia , Alphainfluenzavirus/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Antivirais/química , Antivirais/farmacologia , Humanos , Zanamivir/química , Zanamivir/farmacologia
6.
J Med Virol ; 95(3): e28685, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939012

RESUMO

Human influenza A/H2N2 can induce a pandemic in the future. This study evaluated the hemagglutination inhibition and neutralizing titers of intravenous immunoglobulin against A/H2N2 viruses, indicating the status of the donor population. In this study, the antibody titers decreased during the study period-2012-2021-suggesting a reduction in the immunity of the studied population.


Assuntos
Alphainfluenzavirus , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H2N2 , Imunoglobulinas Intravenosas/uso terapêutico , Anticorpos Antivirais , Japão , Influenza Humana/epidemiologia , Testes de Inibição da Hemaglutinação
7.
Front Immunol ; 14: 1030879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845136

RESUMO

Introduction: There is an unmet medical need for effective anti-inflammatory agents for the treatment of acute and post-acute lung inflammation caused by respiratory viruses. The semi-synthetic polysaccharide, Pentosan polysulfate sodium (PPS), an inhibitor of NF-kB activation, was investigated for its systemic and local anti-inflammatory effects in a mouse model of influenza virus A/PR8/1934 (PR8 strain) mediated infection. Methods: Immunocompetent C57BL/6J mice were infected intranasally with a sublethal dose of PR8 and treated subcutaneously with 3 or 6 mg/kg PPS or vehicle. Disease was monitored and tissues were collected at the acute (8 days post-infection; dpi) or post-acute (21 dpi) phase of disease to assess the effect of PPS on PR8-induced pathology. Results: In the acute phase of PR8 infection, PPS treatment was associated with a reduction in weight loss and improvement in oxygen saturation when compared to vehicle-treated mice. Associated with these clinical improvements, PPS treatment showed a significant retention in the numbers of protective SiglecF+ resident alveolar macrophages, despite uneventful changes in pulmonary leukocyte infiltrates assessed by flow cytometry. PPS treatment in PR8- infected mice showed significant reductions systemically but not locally of the inflammatory molecules, IL-6, IFN-g, TNF-a, IL-12p70 and CCL2. In the post-acute phase of infection, PPS demonstrated a reduction in the pulmonary fibrotic biomarkers, sICAM-1 and complement factor C5b9. Discussion: The systemic and local anti-inflammatory actions of PPS may regulate acute and post-acute pulmonary inflammation and tissue remodeling mediated by PR8 infection, which warrants further investigation.


Assuntos
Alphainfluenzavirus , Pneumonia , Camundongos , Animais , Poliéster Sulfúrico de Pentosana/farmacologia , Poliéster Sulfúrico de Pentosana/uso terapêutico , Camundongos Endogâmicos C57BL , Pneumonia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
8.
Science ; 379(6632): 586-591, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758070

RESUMO

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Assuntos
Alphainfluenzavirus , Antivirais , Betainfluenzavirus , Produtos Biológicos , Inibidores Enzimáticos , Metiltransferases , Capuzes de RNA , Tubercidina , Replicação Viral , Animais , Humanos , Camundongos , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/biossíntese , Replicação Viral/efeitos dos fármacos , Alphainfluenzavirus/efeitos dos fármacos , Betainfluenzavirus/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Tubercidina/análogos & derivados , Tubercidina/farmacologia , Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Streptomyces/química , Simulação por Computador , Células A549
9.
Microb Pathog ; 176: 106017, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736545

RESUMO

The primary replication site of Influenza A virus (IAV) is type II alveolar epithelial cells (AECII), which are central to normal lung function and present important immune functions. Surfactant components are synthesized primarily by AECII, which play a crucial role in host defense against infection. The aim of this study was to analyze if the impact of influenza infection is differential between A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) on costimulatory molecules and ProSP-C expression in AECII from BALB/c mice infected and A549 cell line infected with both strains. Pandemic A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) were used to infect BALB/c mice and the A549 cell line. We evaluated the surface expression of co-stimulatory molecules (CD45/CD31/CD74/ProSP-C) in AECII and A549 cell lines. Our results showed a significant decrease in ProSP-C+ CD31- CD45- and CD74+ CD31- CD45- expression in AECII and A549 cell line with the virus strain A(H1N1)pdm09 versus A/Victoria/3/75 (H3N2) and controls (non-infection conditions). Our findings indicate that changes in the expression of ProSP-C in AECII and A549 cell lines in infection conditions could result in dysfunction leading to decreased lung compliance, increased work of breathing and increased susceptibility to injury.


Assuntos
Alphainfluenzavirus , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Humanos , Camundongos , Células Epiteliais Alveolares , Vírus da Influenza A Subtipo H3N2 , Tensoativos
10.
BMC Oral Health ; 22(1): 639, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566172

RESUMO

BACKGROUND: Saliva possesses antiviral activity, with submandibular-sublingual (SMSL) saliva having higher antiviral activity than parotid saliva. Various salivary proteins have inactivating effects on influenza A virus (IAV), but the detailed relationship between antiviral proteins and salivary anti-IAV activities in the parotid and SMSL glands is unknown. Here, to identify salivary proteins with anti-IAV activity, salivary proteins from parotid and SMSL glands were identified, quantified, and compared using liquid chromatography-mass spectrometry. METHODS: Twelve healthy male volunteers participated in the study. Parotid and SMSL saliva was collected by suction and collection devices. We assessed anti-IAV activities, protein concentrations, and protein-bound sialic acid concentrations in parotid and SMSL saliva. RESULTS: SMSL had significantly higher anti-IAV activity than parotid saliva. SMSL also had higher concentrations of glycoproteins, such as mucin 5B and mucin 7, protein-bound sialic acid, cystatins, and lysozyme C, compared with parotid saliva. Salivary mucin 5B and mucin 7 concentrations significantly positively correlated with the salivary protein-bound sialic acid concentration. Salivary anti-IAV activity significantly positively correlated with protein-bound sialic acid, mucin 5B, mucin 7, cystatin-C, -S, and -SN concentrations. CONCLUSION: Salivary mucins, cystatins, and lysozyme C contribute to the high anti-IAV activity of SMSL saliva.


Assuntos
Alphainfluenzavirus , Antivirais , Mucina-5B , Saliva , Proteínas e Peptídeos Salivares , Humanos , Masculino , Mucina-5B/análise , Mucina-5B/metabolismo , Mucinas/análise , Mucinas/metabolismo , Muramidase/metabolismo , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/metabolismo , Glândula Parótida , Saliva/química , Proteínas e Peptídeos Salivares/metabolismo , Glândula Submandibular/química , Glândula Submandibular/metabolismo
13.
Zoonoses Public Health ; 69(6): 721-728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35538641

RESUMO

In 2019, sows at a swine farm in Japan showed influenza-like illness (ILI) shortly after contact with an employee that exhibited ILI. Subsequently, a veterinarian became sick shortly after examining the sows and was diagnosed with influenza A virus (IAV) infection. Then, her family also contracted the infection. Subsequently, Pandemic A(H1N1)2009 viruses were isolated from all samples obtained from the sows, veterinarian and her family. Whole-genome analysis of the isolates confirmed that the viruses belonged to the same lineage (6B.1A) and the genome sequences obtained from all of the isolates were almost identical to each other. Furthermore, an epidemiological survey revealed no contact between veterinarians or their families and influenza patients prior to the onset of illness. These results strongly indicated a case of bidirectional infection between humans and sows. At the same time, we found a few unique mutations in the IAV genomes corresponding to the host species. The mutations that occurred in the virus after it was transferred from the farm worker to the sows were not observed in the humans infected from the sows, probably as a result of the mutations reverting to the original nucleotides. These results demonstrate that the bidirectional transmission of IAV is a potential risk for the next pandemic outbreak due to the emergence of new mutant strains.


Assuntos
Alphainfluenzavirus , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Japão/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Suínos
14.
Immunity ; 55(2): 290-307.e5, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090581

RESUMO

Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.


Assuntos
Linfócitos B/imunologia , Antígenos CD11/metabolismo , Subpopulações de Linfócitos/imunologia , Células T Auxiliares Foliculares/imunologia , Proteínas com Domínio T/metabolismo , Viroses/imunologia , Animais , Anticorpos Antivirais/metabolismo , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Alphainfluenzavirus/imunologia , Integrinas/metabolismo , Subpopulações de Linfócitos/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo , Camundongos , Baço/imunologia
15.
Sci Rep ; 12(1): 135, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997007

RESUMO

Interleukin-7 (IL-7) is a cytokine known for its importance in T cell development and survival. How IL-7 shapes CD8 T cell responses during an acute viral infection is less understood. We had previously shown that IL-7 signaling deficient mice have reduced accumulation of influenza-specific CD8 T cells following influenza infection. We sought to determine whether IL-7 affects early CD8 T cell expansion in the mediastinal lymph node and effector function in the lungs. Using IL-7Rα signaling deficient mice, we show that IL-7 is required for a normal sized mediastinal lymph node and the early clonal expansion of influenza-specific CD8 T cells therein. We show that IL-7 plays a cell-intrinsic role in the accumulation of NP366-374 and PA224-233-specific CD8 T cells in the lymph node. We also found that IL-7 shapes terminal differentiation, degranulation and cytokine production to a greater extent in PA224-233-specific than NP366-374-specific CD8 T cells. We further demonstrate that IL-7 is induced in the lung tissue by viral infection and we characterize multiple cellular sources that contribute to IL-7 production. Our findings on IL-7 and its effects on lower respiratory diseases will be important for expanding the utility of therapeutics that are currently available.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Interleucina-7/metabolismo , Pulmão/metabolismo , Linfonodos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Células A549 , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Alphainfluenzavirus/imunologia , Alphainfluenzavirus/patogenicidade , Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Pulmão/imunologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
16.
J Med Virol ; 94(2): 575-581, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655235

RESUMO

Although the influenza virus usually causes a self-limiting disease, deaths are reported even in children without risk factors. We aimed to identify the clinical features, mortality associated with severe influenza A and B virus infections of children admitted to the pediatric intensive care unit (PICU). We conducted a retrospective study of children with confirmed influenza infection between 2012 and 2019 who were admitted to the PICU. Demographic features, risk factors, clinical data, microbiological data, complications, and outcomes were collected. Over seven influenza seasons (2012-2011 to 2015-2016), 713 children diagnosed with laboratory-confirmed influenza-related LRTI, and PICU admission was needed in 6% (46/713) of the patients. Thirty-one patients (67.4%) were diagnosed with influenza A and 15 patients were diagnosed with influenza B. Epidemiologic and clinical characteristics were similar in both influenza types, lactate dehydrogenase levels were significantly higher for influenza A than for influenza B infections. Although the influenza A to B ratio among the patients admitted to the PICU was 2.06, the percentage of cases requiring PICU admission was nearly two times higher in influenza B cases. There was no statistically significant difference in disease severity and complications in patients with influenza A and influenza B.


Assuntos
Alphainfluenzavirus/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/mortalidade , Influenza Humana/virologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Pediátrica , Masculino , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Turquia
17.
Biomed Pharmacother ; 146: 112581, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34965505

RESUMO

Epimedium koreanum Nakai (EKN) is a popular plant in Korean and Chinese medicine for treating a variety of ailments. The aqueous extract of EKN has a significant inhibitory impact on influenza A virus (IAV) infection by directly blocking viral attachment and having a virucidal effect, according to this study. Using fluorescent microscopy and fluorescence-activated cell sorting (FACS) with a green fluorescent protein (GFP)-tagged Influenza A/PR/8/34 virus, we examined the effect of EKN on viral infection. By viral infection, EKN strongly suppresses GFP expression, and at a dosage of 100 µg/mL, EKN decreased GFP expression by up to 90% of the untreated infected control. Immunofluorescence and Western blot analyses against influenza viral proteins revealed that EKN decreased influenza viral protein expression in a dose-dependent manner. EKN inhibited the H1N1 influenza virus's hemagglutinin (HA) and neuraminidase (NA), preventing viral attachment to cells. Furthermore, EKN had a virucidal impact and inhibited the cytopathic effects of H1N1, H3N2 and influenza B virus infection. Finally, our findings show that EKN has the potential to be developed as a natural viral inhibitor against influenza virus infection.


Assuntos
Alphainfluenzavirus/efeitos dos fármacos , Antivirais/farmacologia , Epimedium , Extratos Vegetais/farmacologia , Animais , Hemaglutininas/efeitos dos fármacos , Humanos , Camundongos , Neuraminidase/efeitos dos fármacos , Proteínas Virais/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
18.
Front Immunol ; 12: 786617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868073

RESUMO

Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/imunologia , Proteínas Virais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos , Antígenos Virais/imunologia , Antígenos Virais/ultraestrutura , Domínio Catalítico/genética , Domínio Catalítico/imunologia , Proteção Cruzada , Evolução Molecular , Humanos , Imunogenicidade da Vacina , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Alphainfluenzavirus/enzimologia , Alphainfluenzavirus/genética , Alphainfluenzavirus/imunologia , Betainfluenzavirus/enzimologia , Betainfluenzavirus/genética , Betainfluenzavirus/imunologia , Mutação , Nanopartículas , Neuraminidase/administração & dosagem , Neuraminidase/genética , Neuraminidase/ultraestrutura , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/ultraestrutura , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
19.
Front Immunol ; 12: 728669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566986

RESUMO

CD8 T cell memory offers critical antiviral protection, even in the absence of neutralizing antibodies. The paradigm is that CD8 T cell memory within the lung tissue consists of a mix of circulating TEM cells and non-circulating TRM cells. However, based on our analysis, the heterogeneity within the tissue is much higher, identifying TCM, TEM, TRM, and a multitude of populations which do not perfectly fit these classifications. Further interrogation of the populations shows that TRM cells that express CD49a, both with and without CD103, have increased and diverse effector potential compared with CD49a negative populations. These populations function as a one-man band, displaying antiviral activity, chemokine production, release of GM-CSF, and the ability to kill specific targets in vitro with delayed kinetics compared with effector CD8 T cells. Together, this study establishes that CD49a defines multiple polyfunctional CD8 memory subsets after clearance of influenza infection, which act to eliminate virus in the absence of direct killing, recruit and mature innate immune cells, and destroy infected cells if the virus persists.


Assuntos
Alphainfluenzavirus/imunologia , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Integrina alfa1/metabolismo , Pulmão/metabolismo , Células T de Memória/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Quimiocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interações Hospedeiro-Patógeno , Alphainfluenzavirus/patogenicidade , Cinética , Pulmão/imunologia , Pulmão/virologia , Masculino , Células T de Memória/imunologia , Células T de Memória/virologia , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA